International conference: Non-Wood Forest Products, Health and Well-being 12<sup>th</sup> - 13<sup>th</sup> of November 2013 Hotel Korpilampi, Espoo, Finland



### Forest management and commercial mushroom yields in spruce stands in **Eastern Finland**



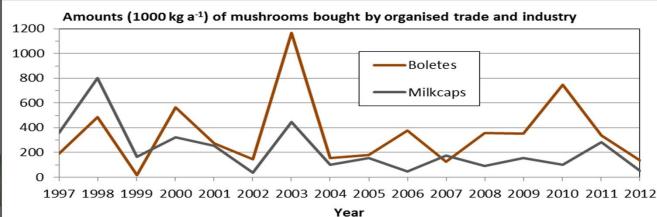
Mikko Kurttila, Jari Miina & Kauko Salo



Multipurpose trees and non-wood forest products, a challenge and opportunity www.star-tree.eu

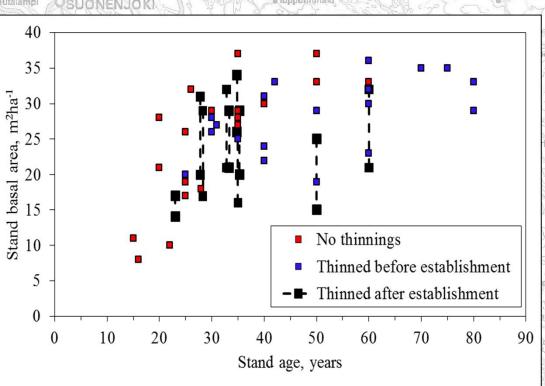
### Contents

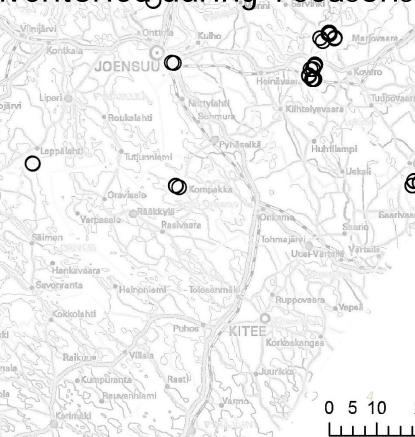
- Background
- Materials
- Commercial mushroom yields
- How forest management affects the yields?
- Conclusions


More information (in Finnish): Miina, J., Kurttila, M. & Salo, K. 2013. Kauppasienisadot itäsuomalaisissa kuusikoissa – koealaverkosto ja tuloksia vuosilta 2010–2012 <u>http://www.metla.fi/julkaisut/workingpapers/2013/mwp266.htm</u>

#### NWFPs - undervalued and -utilized forest resource

- Huge amounts of commercial mushrooms grows in our forests
  - Less than 1 % of biological yield collected
  - Mushroom species: about 200 edible 31 listed as "commerical - about 10 commonly marketed
  - Low value-added: mushrooms exported fresh or frozen
- In Finland, the value of commercial NWFPs) picking (berries and mushroomsis about 1% of the value of wood from forests


• However, commercial mushrooms were harvested in the peak year of 2003 about 13.5 mill. kg, value 32.5 mill. €


→ NWFPs not considered in forest management decisions



### Sample plot network in Eastern

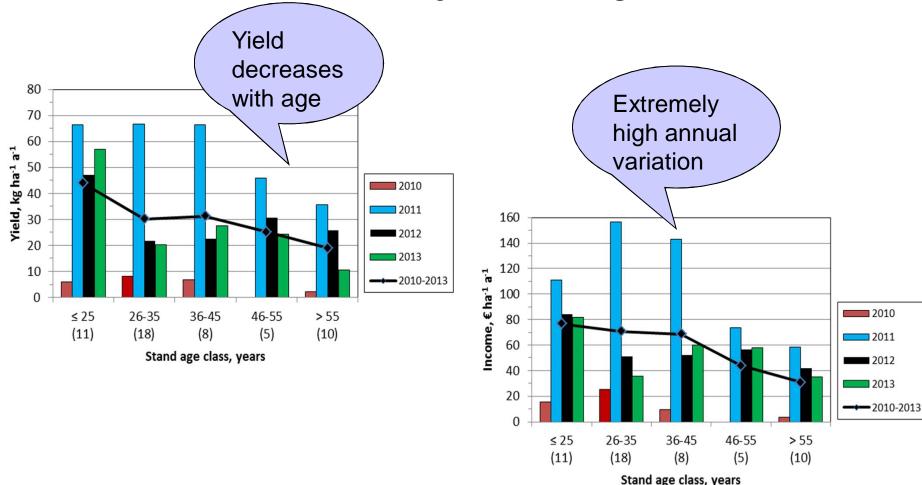
- Alluskyla Hirvilahti 52 mushroom sample plots (20 x 20 m)
- Mainly in middle-aged, planted spruce stands
- Commercial mushroom yields inventoried during 4 seasons





### Yields (kg/ha/a) of commercial mushrooms

| Mushroom species           | Mean | Std dev. | Min. | Max.  |
|----------------------------|------|----------|------|-------|
| Boletus edulis             | 6.1  | 7.4      | 0.0  | 30.0  |
| Suillus variegatus         | 0.1  | 0.3      | 0.0  | 1.8   |
| Leccinum versipelle        | 2.5  | 5.6      | 0.0  | 24.2  |
| Boletus pinophilus         | 0.0  | 0.0      | 0.0  | 0.0   |
| Leccinum vulpinum          | 0.1  | 0.4      | 0.0  | 2.8   |
| Lactarius trivialis        | 8.2  | 10.2     | 0.0  | 55.3  |
| Lactarius rufus            | 8.7  | 23.9     | 0.0  | 170.3 |
| Lactarius torminosus       | 0.4  | 1.1      | 0.0  | 4.2   |
| Russula paludosa           | 2.3  | 6.6      | 0.0  | 35.3  |
| Russula decolorans         | 0.1  | 0.1      | 0.0  | 0.7   |
| Russula claroflava         | 0.2  | 0.6      | 0.0  | 3.8   |
| Russula vinosa             | 1.1  | 2.2      | 0.0  | 14.3  |
| Rozites caperatus          | 0.2  | 0.4      | 0.0  | 2.3   |
| Cantharellus cibarius      | 0.4  | 1.6      | 0.0  | 10.4  |
| Albatrellus ovinus         | 0.0  | 0.2      | 0.0  | 1.7   |
| Craterellus cornucopioides | 0.0  | 0.0      | 0.0  | 0.0   |
| Hygrophorus camarophyllus  | 0.0  | 0.0      | 0.0  | 0.0   |
| Cantharellus tubaeformis   | 0.1  | 0.8      | 0.0  | 5.6   |
| Hydnum repandum            | 0.0  | 0.3      | 0.0  | 2.1   |
| All edible mushrooms       | 30.6 | 27.6     | 4.0  | 178.7 |


Some stands are extremely good and specialized, some are generalists

# Value (€/ha/a) of commercial mushrooms

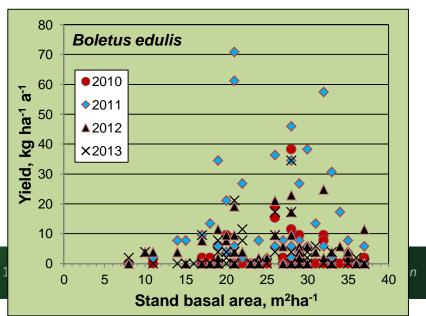
Boletus 1/3 of total value

| Mushroom species       | Mean | Std dev. | Min. | Max.  |
|------------------------|------|----------|------|-------|
| Boletus edulis         | 22.2 | 26.7     | 0.0  | 108.8 |
| Other boletes          | 3.5  | 7.5      | 0.0  | 32.5  |
| Lactarius trivialis    | 16.3 | 20.2     | 0.0  | 109.6 |
| Other milkcaps         | 11.9 | 31.1     | 0.0  | 221.3 |
| Russulas               | 4.8  | 9.1      | 0.0  | 47.0  |
| Other edible mushrooms | 2.7  | 8.7      | 0.0  | 54.5  |
| All edible mushrooms   | 61.4 | 48.3     | 10.4 | 235.7 |

# Mean annual yield and income from the sale of mushrooms by stand age classes



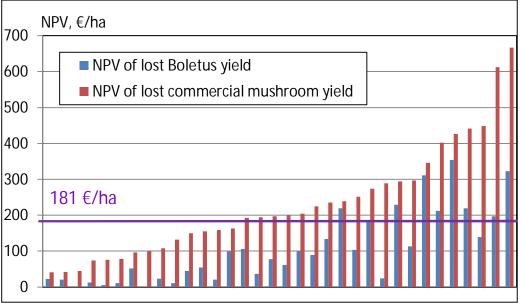
Metsä Tieto Osaaminen Hyvinvointi


#### How about the effects of forest management

- Different mushroom species have different responses to management operations
- Recommendation: Concentrate efforts on stands that have been identified to be good mushroom forests !

Principle: The total benefit of modified forest management must be > benefit from timber production oriented management (monetary or utility to forest owner)

## Some advice for management:


- In very dense spruce stands, lack of water reduces the yields of all mushrooms => thinning beneficial
- However, the most productive stands are at the stage of the first commercial thinning => postpone thinning?
- Boletus edulis is not clearly affected by stand basal area; long-term effect of thinning is unknown





# Postponing 1<sup>st</sup> commercial thinning

- Opportunity cost of postponing 1<sup>st</sup> commerical thinning by 10 years vs. discounted value of current average mushroom yield for the next 10 years.
- Opportunity cost 181 €/ha at 3 % interest rate
- $\rightarrow$  Spruce stand management is flexible
- → Maintaining the average yield for 10 years without thinning is beneficial in almost 2/3 of our sample plots.



## Conclusions

- Spruce stands produce high amounts of commercial mushrooms
  - Forest regeneration for spruce is common more young spruce stands are achieving the stage of high mushroom production
  - Between-year variation in the yields is a problem for commercial utilization
- Effects of stand characteristics and stand management on the mushroom yields are not (yet) clear
  - Long-term monitoring of experimental plots is needed
  - Not only stand characteristics, but also soil properties, ground vegetation, weather conditions, etc. affect the mushroom yields
- Forest owners have multiple goals other than timber becoming more important
  - Increasing need to give advice how to manage forests for NWFPs

KNOWLEDGE

Know-how

Well-being

METLA

Forest

Thank you

12/17/2013